Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters
نویسندگان
چکیده
منابع مشابه
Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics
Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...
متن کاملRIE-Texturing of Multicrystalline Silicon Solar Cells
We developed a maskless plasma texturing technique for multicrystalline silicon (mc-Si) cells using Reactive Ion Etching (RIE) that results in higher cell performance than that of standard untextured cells. Elimination of plasma damage has been achieved while keeping front reflectance to extremely low levels. Internal quantum efficiencies as high as those on planar cells have been obtained, boo...
متن کاملTexturing industrial multicrystalline silicon solar cells
Three potential techniques for texturing commercial multicrystalline silicon solar cells are compared on the basis of reflectance measurements. Wet acidic texturing, which would be the least costly to implement, produces a modest improvement in reflection before antireflection coating and encapsulation, whereas maskless reactive-ion etching texturing, and especially masked reactive-ion etched p...
متن کاملEffects of solar cell processing steps on dislocation luminescence in multicrystalline silicon
We examine the impacts of hydrogenation and phosphorus gettering steps on the deep-level photoluminescence spectra of dislocations and the surrounding regions in multicrystalline silicon wafers, using micro-photoluminescence spectroscopy with micron-scale spatial resolution. We found that the D1 line, originating from secondary defects around dislocation sites, was enhanced significantly after ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Photovoltaics
سال: 2017
ISSN: 2156-3381,2156-3403
DOI: 10.1109/jphotov.2016.2621342